DIASTEREOSELECTIVITY IN THE ADDITION OF ENOLATE ANIONS TO N-METHOXYCARBONYLIMINES GENERATED IN SITU FROM α -METHOXY CARBAMATES¹

Tatsuya Shono,* Naoki Kise, Fumio Sanda, Satoru Ohi, and Ken Yoshioka Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606, Japan

Summary: The diastereoselectivity of the addition of enolate anions of ketones or esters to N-Methoxycarbonylimines generated in situ from α -Methoxy carbamates was studied.

Recently we have reported that the nucleophilic addition of enolate anions of alkyl acetates or 2-methyloxazolines to N-methoxycarbonylimines 2 generated in situ from α -methoxycarbamates 1 gave β -amino acid derivatives.² We wish to report herein the diastereoselectivity in the addition of enolate anions 3 derived from ketones or esters to 2 (eq 1).

General procedure is as follows: A mixture of 1 (5mmol) and a ketone or an ester (6mmol) in THF (5ml) was added to a solution of LDA (12mmol) in THF-hexane (15ml) at -70 °C. The temperature was gradually raised to 0°C and the mixture was stirred for additional 2 hrs. After usual work-up, the diastereomeric ratio was determined by GLC analysis. Each diastereomer could be separated by column chromatography on silica gel.

The results are summarized in Table 1. Cyclic ketones gave anti-adducts preferentially (Run 1-4), whereas acyclic ketones afforded syn-adducts mainly (Run 5-8). The reaction of ester enolates showed anti-diastereoselectivity (Run 9-16). These selectivities are consistent with those of the corresponding aldol reactions with aldehydes³ and may be explained by Zimmerman-Traxlar transition states.⁴

Next, we have studied the reaction of ester enolate $\underline{3}$ (R²=Et, R³=OMe) with $\underline{1}$ in the presence of some Ti-complexes.⁵ The diastereoselectivity was little influenced by the addition of TiCl₄, TiCl₂(Oi-Pr)₂, or TiCl(Oi-Pr)₃, while it was noteworthy that synselectivity was observed in the presence of Ti(Oi-Pr)₄ (R¹=Me: 89% yield, anti:syn=4:6; R¹= i-Pr: 90% yield, anti:syn=1:9). Although the role of Ti(Oi-Pr)₄ is not clear at present, such inversion of the selectivity brought by the addition of Ti(Oi-Pr)₄ has been hitherto unknown.⁷

The reaction of ester enolates with 1 is expected to be a useful method for the synthesis of 3,4-disubstituted β -lactams, which are precursors of carbapenem antibiotics. Some of our preliminary results are described in scheme 1.¹⁰ Treatment of a mixture of an alkyl butyrate and 5 with LDA gave the anti-adduct preferentially. After separetion of the stereoisomers, anti-6 was transformed to trans- β -lactam 7. On the other hand, synadduct was obtained as the major isomer by the reaction of (S)-alkyl 3-hydroxybutyrate 8 with 5, since the generation of the intermediate Z-enolate 9 by the treatment of 8 with two equivalents of LDA made the formation of syn-adduct favorable. Treatment of the adducts 10 with LDA gave cis- β -lactam 11 (major) and trans- β -lactam 12 (minor). (R)-alkyl 3-hydroxybutyrate also gave the enantiomers of 11 and 12 by the same method.

(a) (BOC)₂CO, CHCl₃, reflux, 3h; (b) - e, 0.04M Et₄NOTs/MeOH, 8F/mol; (c) TBDPSCI, imidazole, DMF, 0°C, 2h;
(d) LDA, THF, -70°C →0°C, 2h; (e) Seperation of isomers by column chromatography on silica gel; (f) TFA, 0°C, 30min;
(g) LDA, THF, 0°C, 2h.

Scheme 1

Run	1	R1	3	R ²	R 3	Yield of <u>4</u> (%) ^a	anti- <u>4</u> /syn- <u>4</u> ^b
1	<u>1a</u>	Me	<u>3a</u>	-(CH2) 3-	72	7/3
2	<u>1b</u>	i-Pr	<u>3a</u>	-(CH ₂) ₃ -		52	9/1
3	<u>1b</u>	i-Pr	<u>3b</u>	-(CH ₂) ₄ -		86	9/1
4	<u>1c</u>	Ph	<u>3a</u>	-(CH ₂) ₃ -		57	7/3
5	<u>1a</u>	Me	<u>3c</u>	Me	Et	61	3/7
6	<u>1b</u>	i-Pr	<u>3c</u>	Me	Et	76	1/9
7	<u>1b</u>	i-Pr	<u>3d</u>	Me	Ph	88	2/8
8	<u>1c</u>	Ph	<u>3c</u>	Me	Et	61	3/7
9	<u>1a</u>	Me	<u>3e</u>	Et	OMe	78	7/3
10	<u>1a</u>	Me	<u>3 f</u>	Et	0i-Pr	83	8/2
11	<u>1a</u>	Me	<u>3g</u>	i-Pr	0Me	88	7/3
12	<u>1b</u>	i-Pr	<u>3e</u>	Et	OMe	86	7/3
13	<u>1b</u>	i-Pr	3 f	Et	0i-Pr	92	8/2
14	<u>1b</u>	i-Pr	3g	i-Pr	OMe	92	8/2
15	<u>1b</u>	i-Pr	3h	Ph	OMe	82	7/3
16	<u>1d</u>	t-Bu	<u>3</u> e	Et	OMe	93	9/1
10	<u>1u</u>	t-bu	<u> </u>	Εt	Ume	30	971

Table 1

a Isolated yields. Satisfactory spectroscopic and elemental analyses were obtained. b Determined by GLC analysis. See ref. 8.

Acknowledgement. One of the authors (N.K.) wishes to thank the Ministry of Education, Science, and Culture, Japan, for Grant-in-Aid for Encouragement of Young Scientist (No. 62756780).

References and Notes

1. Electroorganic Chemistry. 115.

 T. Shono, N. Kise, F. Sanda, S. Ohi, and K. Tsubata, Tetrahedron Lett., <u>29</u>, 231 (1988).
 C. H. Heathcock, In "Asymmetric Synthesis"; J. D. Morrison, Ed.; Academic Press: London, 1984; Vol III, pp 111-212.

4. H. E. Zimmerman and M. P. Traxlar, J. Am. Chem. Soc., 79, 1920 (1957).

5. Reetz and Peter have reported that the reactions of Ti-enolate (Li-enolate + TiClX₃) and Ti ate-complex (Li-enolate + Ti(0i-Pr)₄) derived from ketones generally showed syn-selectivity irrespective of enolate geometry.⁶

6. M. T. Reetz and R. Peter, Tetrahedron Lett., 22, 4691 (1981).

7. M. T. Reetz, "Organotitanium Reagents in Organic Synthesis"; Springer-Verlag : Berlin, 1986; pp 148-174. 8. Stereoconfiguration of the adducts <u>4</u> obtained from ketones (Run 1-8) were determined by their transformation to cyclic carbamates <u>13</u> and their ¹H-NMR analysis according to the reported method.⁹ R^{2}

Stereochemistry of <u>4</u> derived from esters (Run 9-16) was confirmed by their conversion to β -lactams <u>14</u> and their ¹H-NMR spectra.

9. Y. Yamamoto, T. Komatsu, and K. Maruyama, J. Org. Chem., 50, 3115 (1985).

10. PS-5¹¹ and 8-Epithienamycin¹² were synthesized from <u>7</u> and <u>12</u>, respectively.

11. T. Kametani, T. Honda, A. Nakayama, Y. Sasakai, T. Mochizuki, and K. Fukumoto, J. Chem. Soc. Perkin I, <u>1981</u>, 2228.

12. S. M. Schmitt, D. B. R. Johnston, and B. G. Christensen, J. Org. Chem., <u>45</u>, 1142 (1980).

13. The diastereomeric ratio was determined by 400MHz 'H-NMR spectrum.

14. The absolute configuration was determined to be 3R4R by its conversion to <u>15</u>: $[\alpha]_{D^{20}=-13.7}$ (cl.5, CHCl₃)(Lit.¹⁵ -39.6).

15. K. Okano, T. Izawa, and M. Ohono, Tetrahedron Lett., 24, 217 (1983).

16. The adduct <u>10</u> was found to be a mixture of two stereoisomers on the basis of 400MHz ¹H-NMR analysis, though these could not be separated.

17. <u>11</u>: $[\alpha]_{D}^{20} = -7.5$ (c1.0, CHCl₃). <u>12</u>: $[\alpha]_{D}^{20} = +18.0$ (c1.0, CHCl₃). Stereostructures of 11 and 12 were assinged by their transformation to the known compounds <u>16</u> and <u>17</u>.¹⁸

18. F. A. Bouffard, D. B. R. Johnston, and B. G. Christensen, J. Org. Chem., <u>45</u>, 1130 (1980).

(Received in Japan 7 January 1989)

1256